
1 

 

OpenArray v1.0: A Simple Operator Library for the Decoupling of 1 

Ocean Modelling and Parallel Computing 2 

 3 

Xiaomeng Huang1,2,3, Xing Huang1,3, Dong Wang1,3, Qi Wu1, Shixun Zhang3, Yuwen 4 

Chen1, Mingqing Wang1,3, Yi Li3, Yuan Gao1, Qiang Tang1, Yue Chen1, Zheng Fang1, 5 

Zhenya Song2,4, Guangwen Yang1,3 6 

 7 
1 Ministry of Education Key Laboratory for Earth System Modeling, Department of 8 

Earth System Science, Tsinghua University, Beijing 100084, China 9 
2 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National 10 

Laboratory for Marine Science and Technology, Qingdao, 266237, China 11 
3 National Supercomputing Center in Wuxi, Wuxi, 214011, China 12 
4 First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, 13 

China 14 

 15 

Corresponding author: hxm@tsinghua.edu.cn  16 

Abstract 17 

The increasing complexity of climate models combined with rapidly evolving 18 

computational techniques introduces a large gap in climate modelling. In this work, we 19 

design a simple computing library to decouple the work of ocean modelling from the 20 

work of parallel computing. The library provides twelve basic operators that feature 21 

user-friendly interfaces, effective programming and automatic parallelization. We 22 

further implement a highly readable and efficient ocean model that contains only 1860 23 

lines of code but achieves a 91% parallel efficiency in strong scaling and 99% parallel 24 

efficiency in weak scaling with 4096 Intel CPU cores. This ocean model also exhibits 25 

excellent scalability on the Sunway TaihuLight supercomputer. This work presents a 26 

valuable example for the development of the next generation of ocean models. 27 

 28 

Keywords: automatic parallelization, operator, ocean modelling, parallel computing 29 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



2 

 

1. Introduction 30 

Numerous climate models have been developed in the past several decades to improve 31 

the predictive understanding of the climate system (Bonan and Doney, 2018; Collins et 32 

al., 2018; Taylor et al., 2012). These models are becoming increasingly complicated, 33 

and the amount of code has expanded from a few thousand lines to tens of thousands 34 

of lines, or even millions of lines. In terms of software engineering, an increase in code 35 

causes the models to be more difficult to develop and maintain. 36 

 37 

The complexity of these models mainly originates from three aspects. First, more model 38 

components and physical processes have been embedded into the climate model, 39 

leading to a tenfold increase in the amount of code (Alexander and Easterbrook, 2015). 40 

Second, some heterogeneous and advanced computing platforms (Lawrence et al., 2018) 41 

have been widely applied by the climate community, resulting in a fivefold increase in 42 

the amount of code (Xu et al., 2015). Last, most of the model program needs to be 43 

rewritten due to the continual development of novel numerical methods and meshes. 44 

The promotion of novel numerical methods and technologies produced in the fields of 45 

computational mathematics and computer science have been limited in climate science 46 

because of the extremely heavy burden caused by program rewriting and migration. 47 

 48 

Over the next few decades, tremendous computing capacities will be accompanied by 49 

more heterogeneous architectures, thus making for a much more sophisticated 50 

computing environment for climate modellers than ever before (Bretherton et al., 2012). 51 

Clearly, transiting the current climate models to the next generation of computing 52 

environments will be highly challenging and disruptive. Overall, complex climate 53 

model codes combined with rapidly evolving computational techniques create a very 54 

large gap in climate science. 55 

 56 

To reduce the complexity of climate models and bridge this gap, we believe that a 57 

universal and productive computing library is probably the solution. Through 58 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



3 

 

establishing an implicit parallel and platform-independent computing library, the 59 

complex models can be simplified and will no longer need explicit parallelization and 60 

transiting, thus effectively decoupling the development of ocean models from 61 

complicated parallel computing techniques and diverse heterogeneous computing 62 

platforms. 63 

 64 

Many studies have addressed the complexity of parallel programming for numerical 65 

simulations. Operator overloading is one of the mainstream implementations and is 66 

fairly straightforward (Corliss and Griewank, 1994; Walther et al., 2003). However, this 67 

method is prone to work inefficiency because overloading execution induces numerous 68 

unnecessary intermediate variables, consuming valuable memory bandwidth resources. 69 

Using a source-to-source translator offers another solution. The important design 70 

philosophy of this method is dependent on the simple self-defined rules in the former 71 

language to automatically generate code conforming to the latter language (Bae et al., 72 

2013; Lidman et al., 2012). In the MIT General Circulation Model (MITgcm), the 73 

modellers use OpenAD (Naumann et al., 2006; Utke et al., 2008), which is an automatic 74 

algorithmic differentiation tool with a set of mathematical and linguistic rules, to 75 

generate fairly efficient tangent linear and adjoint code (Adcroft et al., 2017). Moreover, 76 

some outstanding domain specific languages (DSL), such as ATMOL (van Engelen, 77 

2001), ICON DSL (Torres et al., 2013) and STELLA (Gysi et al., 2015), provide high-78 

level abstraction interfaces that use mathematical notations similar to those used by 79 

domain scientists so that they can write much more concise and simpler code. 80 

 81 

In fact, when using source-to-source translator and DSL methods to develop practical 82 

climate models, one major difficulty is the requirement of a stable and robust compiler, 83 

rather than an experimental compiler, at the product level. Another difficulty is that the 84 

climate modellers have to change their programming habits and master a new 85 

programming method through novel rules or DSLs instead of using Fortran, which they 86 

are most familiar with. The last difficulty is that although a small part of the existing 87 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



4 

 

source-to-source translators and DSLs currently support graphics processing units 88 

(GPUs), most of the source-to-source translators and DSLs still do not support the 89 

rapidly evolving heterogeneous computing platforms, especially the Chinese Sunway 90 

TaihuLight supercomputer located at the National Supercomputing Center in Wuxi. 91 

 92 

Inspired by the philosophy of operator overloading, source-to-source translating and 93 

DSLs, we integrated the advantages of these three methods into a simple computing 94 

library which is called OpenArray. The main contributions of OpenArray are as follows:  95 

• Easy-to-use. The modellers can write simple operator expressions in Fortran to 96 

solve partial differential equations (PDEs). The entire program appears to be 97 

serial and the modellers do not need to know any parallel computing techniques. 98 

We summarized twelve basic generalized operators to support whole model 99 

calculations in ocean models using the finite difference method and staggered 100 

grid in OpenArray.  101 

• High efficiency. We adopt some advanced methods, including intermediate 102 

computation graphing, asynchronous communication, kernel fusion, loop 103 

optimization, and vectorization, to decrease the consumption of memory 104 

bandwidth and improve efficiency. Performance of the programs implemented 105 

by OpenArray is similar to that of original parallel program manually optimized 106 

by experienced programmers.  107 

• Portability. The current OpenArray version support both CPU and Sunway 108 

platforms. The input of OpenArray is a Fortran source file including the operator 109 

expression form; then, the intermediate C++ code is automatically generated by 110 

OpenArray. The final output is a program that is executable on different 111 

computing platforms. 112 

 113 

Furthermore, we developed a practical ocean model based on the Princeton Ocean 114 

Model (POM, Blumberg and Mellor, 1987) to test the capability and efficiency of 115 

OpenArray. The new model is called the Generalized Operator Model of the Ocean 116 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



5 

 

(GOMO). Because the parallel computing details are completely hidden, GOMO 117 

consists of only 1860 lines of Fortran code and is more easily understood and 118 

maintained than the original POM. Moreover, GOMO exhibits excellent scalability and 119 

portability to central processing unit (CPU) and Sunway platforms.  120 

 121 

The remainder of this paper is organized as follows. Section 2 introduces some concepts 122 

and presents the detailed mathematical descriptions of formulating the PDEs into 123 

operator expressions. Section 3 describes the detailed design and optimization 124 

techniques of OpenArray. Implementation of GOMO is described in section 4. Section 125 

5 evaluates the performance of OpenArray and GOMO. Finally, conclusions are given 126 

in section 6.  127 

 128 

2. Concepts of the Array, Operator, and Abstract Staggered Grid 129 

In this section, we introduce three important concepts in OpenArray: Array, Operator 130 

and Abstract Staggered Grid to illustrate the design of OpenArray. 131 

 132 

2.1 Array 133 

To achieve this simplicity, we designed a derived data type, Array, which inspired our 134 

project name, OpenArray. The new Array data type comprises a series of information, 135 

including a 3-dimensional array to store data, a pointer to the computational grid, a 136 

Message Passing Interface (MPI) communicator, the size of the halo region and other 137 

information about the data distribution. All the information is used to manipulate the 3-138 

dimensional array as a complete object to simplify the parallel computing. In the 139 

traditional ocean models, calculations for each grid point and the i, j, and k loops in the 140 

horizontal and vertical directions are unavoidable. The advantage of taking the arrays 141 

as a complete object is the significant reduction in the number of loop operations in the 142 

models, making the code more intuitive and readable. When using OpenArray library 143 

in a program, one can use type(Array) to declare new variables. 144 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



6 

 

2.2 Operator 145 

To illustrate the concept of an operator, we first take a 2-dimensional (2D) continuous 146 

equation solving sea surface elevation as an example: 147 
𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                     (1) 148 

where η is the surface elevation, U and V are the zonal and meridional velocities, and 149 

D is the depth of the fluid column. We choose the finite difference method and staggered 150 

Arakawa C grid scheme, which are adopted by most regional ocean models. Then, the 151 

above continuous equation can be discretized into the following form. 152 

𝜂𝜂𝑡𝑡+1(𝑖𝑖,𝑗𝑗)−𝜂𝜂𝑡𝑡−1(𝑖𝑖,𝑗𝑗)
2∗𝑑𝑑𝑑𝑑

+ �𝐷𝐷(𝑖𝑖+1,𝑗𝑗)+𝐷𝐷(𝑖𝑖,𝑗𝑗)�∗𝑈𝑈(𝑖𝑖+1,𝑗𝑗)−�𝐷𝐷(𝑖𝑖,𝑗𝑗)+𝐷𝐷(𝑖𝑖−1,𝑗𝑗)�∗𝑈𝑈(𝑖𝑖,𝑗𝑗)
𝑑𝑑𝑑𝑑(𝑖𝑖,𝑗𝑗) +153 

                                   �𝐷𝐷(𝑖𝑖,𝑗𝑗+1)+𝐷𝐷(𝑖𝑖,𝑗𝑗)�∗𝑉𝑉(𝑖𝑖,𝑗𝑗+1)−�𝐷𝐷(𝑖𝑖,𝑗𝑗)+𝐷𝐷(𝑖𝑖,𝑗𝑗−1)�∗𝑉𝑉(𝑖𝑖,𝑗𝑗)
𝑑𝑑𝑑𝑑(𝑖𝑖,𝑗𝑗) = 0             (2) 154 

where subscripts ηt+1 and ηt-1 denote the surface elevations at the (t+1) time step and (t-155 

1) time step. To simplify the discrete form, we introduce some notation for the 156 

differentiation (𝛿𝛿𝑓𝑓𝑥𝑥, 𝛿𝛿𝑏𝑏
𝑦𝑦) and interpolation (( )���𝑓𝑓𝑥𝑥, ( )���𝑏𝑏

𝑦𝑦). The δ and overbar symbols define 157 

the differential operator and average operator. The subscript x or y denotes that the 158 

operation acts in the x or y direction, and the superscript f or b denotes that the 159 

approximation operation is forward or backward.  160 

 161 

Table 1 lists the detailed definitions of twelve basic operators. The term var denotes a 162 

3-dimenonal model variable. All twelve operators for the finite difference calculations 163 

are named using three letters in the form [A|D][X|Y|Z][F|B]. The first letter contains 164 

two options, A or D, indicating an average or a differential operator. The second letter 165 

contains three options, X, Y or Z, representing the direction of operation. The last letter 166 

contains two options, F or B, representing forward or backward operation. The dx, dy 167 

and dz are the distances between two adjacent grid points along the x, y and z directions. 168 

Using the basic operators, Eq. (2) is expressed as: 169 

𝜂𝜂𝑡𝑡+1−𝜂𝜂𝑡𝑡−1
2∗𝑑𝑑𝑑𝑑

+ 𝛿𝛿𝑓𝑓𝑥𝑥( 𝐷𝐷�𝑏𝑏𝑥𝑥 ∗ 𝑈𝑈) + 𝛿𝛿𝑓𝑓
𝑦𝑦� 𝐷𝐷�𝑏𝑏

𝑦𝑦 ∗ 𝑉𝑉� = 0                           (3) 170 

Thus, 171 

𝜂𝜂𝑡𝑡+1 = 𝜂𝜂𝑡𝑡−1 − 2 ∗ 𝑑𝑑𝑑𝑑 ∗ �𝛿𝛿𝑓𝑓𝑥𝑥( 𝐷𝐷�𝑏𝑏𝑥𝑥 ∗ 𝑈𝑈) + 𝛿𝛿𝑓𝑓
𝑦𝑦� 𝐷𝐷�𝑏𝑏

𝑦𝑦 ∗ 𝑉𝑉��                  (4) 172 

Then, Eq. (4) can be easily translated into a line of code using operators (the bottom 173 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



7 

 

left panel in Fig. 1). Compared with the pseudo-codes (the right panel), the 174 

corresponding implementation by operators is simpler and more consistent with the 175 

equations. 176 

 177 

Next, we will use the operators in shallow water equations, which are more complicated 178 

than those in the previous case. Assuming that the flow is in hydrostatic balance and 179 

that the density and viscosity coefficient are constant, and neglecting the molecular 180 

friction, the shallow water equations are: 181 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                                                                                                       (5) 182 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑓𝑓𝑓𝑓𝑓𝑓 = −𝑔𝑔𝑔𝑔 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇𝐷𝐷(𝜕𝜕
2𝑈𝑈
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑈𝑈
𝜕𝜕𝑦𝑦2

)                               (6) 183 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑓𝑓𝑓𝑓 = −𝑔𝑔𝑔𝑔 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇𝐷𝐷(𝜕𝜕
2𝑉𝑉

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝑉𝑉

𝜕𝜕𝑦𝑦2
)                                (7) 184 

where f is the Coriolis parameter, g is the gravitational acceleration, and μ is the 185 

coefficient of kinematic viscosity. Using the Arakawa C grid and leapfrog time 186 

difference scheme, the discrete forms represented by operators are shown in Eq. (8) ~ 187 

Eq. (10).  188 
𝜂𝜂𝑡𝑡+1−𝜂𝜂𝑡𝑡−1

2∗𝑑𝑑𝑑𝑑
+ 𝛿𝛿𝑓𝑓𝑥𝑥( 𝐷𝐷�𝑏𝑏𝑥𝑥 ∗ 𝑈𝑈) + 𝛿𝛿𝑓𝑓

𝑦𝑦�𝐷𝐷�𝑏𝑏
𝑦𝑦 ∗ 𝑉𝑉� = 0                                                                     (8) 189 

𝐷𝐷𝑡𝑡+1𝑈𝑈𝑡𝑡+1−𝐷𝐷𝑡𝑡−1𝑈𝑈𝑡𝑡−1
2∗𝑑𝑑𝑑𝑑

+ 𝛿𝛿𝑏𝑏𝑥𝑥� 𝐷𝐷�𝑏𝑏𝑥𝑥 ∗ 𝑈𝑈 ���������� 𝑓𝑓𝑥𝑥 ∗ 𝑈𝑈�𝑓𝑓𝑥𝑥� + 𝛿𝛿𝑓𝑓
𝑦𝑦 �𝐷𝐷�𝑏𝑏

𝑦𝑦 ∗ 𝑉𝑉 ���������
𝑏𝑏
𝑥𝑥 ∗ 𝑈𝑈�𝑏𝑏

𝑦𝑦� − 𝑓𝑓 𝑉𝑉� 𝑓𝑓
𝑦𝑦 ∗ 𝐷𝐷 ������������

 𝑏𝑏
 𝑥𝑥 = −𝑔𝑔 ∗190 

𝐷𝐷�𝑏𝑏𝑥𝑥 ∗ 𝛿𝛿𝑏𝑏𝑥𝑥(𝜂𝜂) + 𝜇𝜇 ∗ 𝐷𝐷�𝑏𝑏𝑥𝑥 ∗ �𝛿𝛿𝑏𝑏𝑥𝑥 �𝛿𝛿𝑓𝑓𝑥𝑥(𝑈𝑈𝑡𝑡−1)�+ 𝛿𝛿𝑓𝑓
𝑦𝑦 �𝛿𝛿𝑏𝑏

𝑦𝑦(𝑈𝑈𝑡𝑡−1)��                        (9) 191 

𝐷𝐷𝑡𝑡+1𝑉𝑉𝑡𝑡+1−𝐷𝐷𝑡𝑡−1𝑉𝑉𝑡𝑡−1
2∗𝑑𝑑𝑑𝑑

+ 𝛿𝛿𝑓𝑓𝑥𝑥�𝐷𝐷�𝑏𝑏𝑥𝑥 ∗ 𝑈𝑈 ���������
𝑏𝑏
𝑦𝑦 ∗ 𝑉𝑉� 𝑏𝑏

𝑥𝑥�+ 𝛿𝛿𝑏𝑏
𝑦𝑦 �𝐷𝐷�𝑏𝑏

𝑦𝑦 ∗ 𝑉𝑉 ��������� 𝑓𝑓
𝑦𝑦 ∗ 𝑉𝑉� 𝑓𝑓

𝑦𝑦� + 𝑓𝑓𝑈𝑈�𝑓𝑓𝑥𝑥 ∗ 𝐷𝐷 �����������
 𝑏𝑏
 𝑦𝑦 = −𝑔𝑔 ∗192 

𝐷𝐷�𝑏𝑏
𝑦𝑦 ∗  𝛿𝛿𝑏𝑏

𝑦𝑦(𝜂𝜂) + 𝜇𝜇 ∗ 𝐷𝐷�𝑏𝑏
𝑦𝑦 ∗ �𝛿𝛿𝑓𝑓𝑥𝑥�𝛿𝛿𝑏𝑏𝑥𝑥(𝑉𝑉𝑡𝑡−1)�+ 𝛿𝛿𝑏𝑏

𝑦𝑦 �𝛿𝛿𝑓𝑓
𝑦𝑦(𝑉𝑉𝑡𝑡−1)��                      (10) 193 

As the shallow water equations are solved, spatial average and difference operations 194 

are called repeatedly. Such operations consume the vast majority of the computing 195 

resources when solving the shallow water equations. Therefore, it is necessary to 196 

abstract these common operations from PDEs and encapsulate them into user-friendly, 197 

platform-independent implicit parallel operators. As shown in Fig. 2, we require only 3 198 

lines of code to solve the shallow water equations. This more realistic case suggests 199 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



8 

 

that even more complex PDEs can be constructed and solved by following this elegant 200 

approach. 201 

 202 

2.3 Abstract staggered grid 203 

Most ocean models are implemented on the basis of the staggered Arakawa grids 204 

(Arakawa and Lamb, 1981; Griffies et al., 2000). The variables in ocean models are 205 

allocated at different grid points. The calculations that use these variables are performed 206 

after several reasonable interpolations or differences. When we call the differential 207 

operations on a staggered grid, the difference value between adjacent points should be 208 

divided by the grid increment to obtain the final result. Setting the correct grid 209 

increment for modellers is troublesome work that is extremely prone to error, especially 210 

when the grid is nonuniform. Therefore, we proposed an abstract staggered grid to 211 

support flexible switching of operator calculations among different staggered grids. 212 

When the grid information is provided at the initialization phase of OpenArray, the 213 

operators can automatically set the correct grid increments for different Array variables. 214 

 215 

As shown in Fig. 3, the cubes in the (a), (b), (c), and (d) panels are the minimum abstract 216 

grid accounting for 1/8 of the volume of cube in the (e) panel. The eight points of each 217 

cube are numbered sequentially from 0 to 7, and each point has a set of grid increments, 218 

i.e., dx, dy and dz. For example, all the variables of an abstract Arakawa A grid are 219 

located at Point 3. For the Arakawa B grid, the horizontal velocity Array (U, V) are 220 

located at Point 0, the temperature (T), the salinity (S), and the depth (D) are located at 221 

Point 3, and the vertical velocity Array (W) is located at Point 7. For the Arakawa C 222 

grid, Array U is located at Point 2 and Array V is located at Point 1. In contrast, for the 223 

Arakawa D grid, Array U is located at Point 1 and Array V is located at Point 2.  224 

 225 

When we call the average and differential operators mentioned in Table 1, for example, 226 

on the abstract Arakawa C grid, the position of Array D is Point 3, and the average AXB 227 

operator acting on Array D will change the position from Point 3 to Point 1. Since Array 228 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



9 

 

U is also allocated at Point 1, the operation AXB(D)*U is allowed. In addition, the 229 

subsequent differential operator on Array AXB(D)*U will change the position of Array 230 

DXF(AXB(D)*U) from Point 1 to Point 3. 231 

 232 

The jumping rules of different operators are given in Table 2. Due to the design of the 233 

abstract staggered grids, the jumping rules for the Arakawa A, B, C, and D grids are 234 

fixed. A change in the position of an array is determined only by the direction of a 235 

certain operator acting on that array. 236 

 237 

The position information and jumping rules can be used to automatically check whether 238 

the discrete form of an equation is correct. The grid increments are hidden by all the 239 

differential operators, making the code simple and clean. In addition, since the rules are 240 

suitable for multiple staggered Arakawa grids, the modellers can flexibly switch the 241 

ocean model between different Arakawa grids. Notably, the users of OpenArray should 242 

input the correct positions of each array in the initialization phase. The value of the 243 

position is an input parameter when declaring an Array. An error will be reported if an 244 

operation is performed between misplaced points. 245 

 246 

Although most of the existing ocean models use finite difference or finite volume 247 

methods on structured or semi-structured meshes, such as POM, the Modular Ocean 248 

Model (MOM) (Griffies, 2012), the Parallel Ocean Program (POP) (Smith et al., 2010), 249 

MITgcm (Adcroft et al., 2017), and the Regional Ocean Modeling System (ROMS) 250 

(Shchepetkin and McWilliams, 2005), there are still some ocean models using 251 

unstructured meshes, including Advanced Circulation model (ADCIRC) (Luettich et 252 

al., 1992), Finite-Volume Coastal Ocean Model (FVCOM) (Chen et al., 2003), and 253 

Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes 254 

Simulator (SUNTANS) (Fringer et al., 2006), and even the spectral element method 255 

(e.g. Levin et al., 2000). In our current work, we design the basic operator only for finite 256 

different and finite volume methods with structured grids. More customized operator 257 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



10 

 

for the other numerical methods and meshes will be implemented in our future work. 258 

 259 

3. Design of OpenArray 260 

Through the above operator notations in Table 1, ocean modellers can quickly convert 261 

the discrete PDE equations into the corresponding operator expression forms. The main 262 

purpose of OpenArray is to make complex parallel programming transparent to the 263 

modellers. As illustrated in Fig. 4, we use a computation graph as an intermediate 264 

representation, meaning that the operator expression forms written in Fortran will be 265 

translated into a computation graph with a particular data structure. In addition, 266 

OpenArray will use the intermediate computation graph to analyse the dependency of 267 

the distributed data and automatically produce the underlying parallel code. Finally, we 268 

use stable and mature compilers, such as the GNU Compiler Collection (GCC), Intel 269 

compiler (ICC), and Sunway compiler (SWACC), to generate the executable program 270 

according to different backend platforms. These four steps and some related techniques 271 

are described in detail in this section. 272 

 273 

3.1 Operator expression  274 

Although the basic generalized operators listed in Table 1 are only suitable to execute 275 

first-order difference, other high-order difference or even more complicated operations 276 

can be combined by these basic operators. For example, a second-order difference 277 

operation can be expressed as 𝛿𝛿𝑓𝑓𝑥𝑥(𝛿𝛿𝑏𝑏𝑥𝑥(𝑣𝑣𝑣𝑣𝑣𝑣)). Supposing the grid distance is uniform, 278 

the corresponding discrete form is [var(i+1,j,k)+var(i-1,j,k) -2* var(i,j,k) ] / dx2. In 279 

addition, the central difference operation can be expressed as (𝛿𝛿𝑓𝑓𝑥𝑥(𝑣𝑣𝑣𝑣𝑣𝑣) + 𝛿𝛿𝑏𝑏𝑥𝑥(𝑣𝑣𝑣𝑣𝑣𝑣))/2 280 

since the corresponding discrete form is [var(i+1,j,k)-var(i-1,j,k)] / 2dx. 281 
 282 

Using these operators to express the discrete PDE equation, the code and formula are 283 

very similar. We call this effect “the self-documenting code is the formula”. Fig. 5 284 

shows the one-to-one correspondence of each item in the code and the items in the sea 285 

surface elevation equation. The code is very easy to program and understand. Clearly, 286 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



11 

 

the basic operators and the combined operators greatly simplify the development and 287 

maintenance of ocean models. The complicated parallel and optimization techniques 288 

will be concealed by these operators. Modellers no longer need to care about details 289 

and escape from the “parallelism swamp”, thus they can concentrate on the scientific 290 

issues. 291 

 292 

3.2 Intermediate computation graph 293 

Considering the example mentioned in Fig. 5, if one needs to compute the term 294 

DXF(AXB(D)*u) with the traditional operator overloading method, one first computes 295 

AXB(D) and stores the result into a temporary array (named tmp1), and then executes 296 

(tmp1*u) and stores the result into a new array, tmp2. The last step is to compute 297 

DXF(tmp2) and store the result in a new array, tmp3. Numerous temporary arrays 298 

consume a considerable amount of memory, making the efficiency of operator 299 

overloading is poor.    300 

 301 

To solve this problem, we convert an operator expression form into a directed and 302 

acyclic graph, which consists of basic data and function nodes, to implement a lazy 303 

expression evaluation (Bloss et al., 1988; Reynolds, 1999). Unlike the traditional 304 

operator overloading method, we overload all arithmetic functions to generate an 305 

intermediate computation graph rather than to obtain the result of each function. This 306 

method is widely used in deep learning frameworks, e.g., TensorFlow (Abadi et al., 307 

2016) and Theano (Bastien et al., 2012), to improve computing efficiency. Figure 6 308 

shows the procedure of parsing the operator expression form of the sea level elevation 309 

equation into a computation graph. The input variables in the square boxes include the 310 

sea surface elevation (elb), the zonal velocity (u), the meridional velocity (v) and the 311 

depth (D). dt2 is a constant equal to 2*dt. The final output is the sea surface elevation 312 

at the next time step (elf). The operators in the round boxes have been overloaded in 313 

OpenArray. In summary, all the operators provided by OpenArray are functions for the 314 

Array calculation, in which the “=” notation is the assignment function, the “-” notation 315 

is the subtraction function, the “*” notation is the multiplication function, the “+” 316 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



12 

 

notation is the addition function, DXF and DYF are the differential functions, and AXF 317 

and AYF are the interpolated functions. 318 

 319 

3.3 Automatic code generation 320 

Given a computation graph, we design a lightweight engine to automatically generate 321 

the corresponding source code automatically (Fig. 7). Each operator node in the 322 

computation graph is called a kernel. The sequence of all kernels in a graph is usually 323 

fused into a large kernel function. Therefore, the underlying engine schedules and 324 

executes the fused kernel once and obtains the final result directly without any auxiliary 325 

or temporary variables. Simultaneously, the scheduling overhead of the computation 326 

graph and the startup overhead of the basic kernels can be reduced. 327 

 328 

Most of the scientific computational applications are limited by the memory bandwidth 329 

and cannot fully exploit the computing power of a processor. Fortunately, kernel fusion 330 

is an effective optimization method to improve memory locality. When two kernels 331 

need to process some data, their fusion holds shared data in the memory. Prior to the 332 

kernel fusion, the computation graph is automatically analysed to find the operator 333 

nodes that can be fused, and the analysis results are stored in several subgraphs. After 334 

being given a series of subgraphs, the underlying engine dynamically generates the 335 

corresponding kernel function in C++ using just-in-time (JIT) compilation techniques 336 

(Suganuma and Yasue, 2005). Notably, the time to compile a single kernel function is 337 

short, but practical applications usually need to be run for thousands of time steps, and 338 

the overhead of generating and compiling the kernel functions for the computation 339 

graph is extremely high. Therefore, we generate a fusion kernel function only once for 340 

each subgraph, and put it into a function pool. Later, when facing the same computation 341 

subgraph, we fetch the corresponding fusion kernel function directly from the pool.  342 

 343 

Since the arrays in OpenArray are distributed among different processing units, and the 344 

operator needs to use the data in the neighbouring points, in order to ensure the 345 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



13 

 

correctness, it is necessary to check the data consistency before fusion. The use of 346 

different data splitting methods for distributed arrays can greatly affect computing 347 

performance. The current data splitting method in OpenArray is the widely used block-348 

based strategy. Solving PDEs on structured grids often divides the simulated domain 349 

into blocks that are distributed to different processing units. However, the difference 350 

and average operators always require their neighbouring points to perform array 351 

computations. Clearly, controlling the communication of the boundary region is tedious 352 

work for ocean modellers. 353 

 354 

Therefore, we implemented a general boundary management module to automatically 355 

maintain and update the boundary information so that the modellers no longer need to 356 

address the message communication. The boundary management module uses 357 

asynchronous communication to update and maintain the data of the boundary region, 358 

which is useful for simultaneous computing and communication. These procedures of 359 

asynchronous communication are implicitly invoked when calling the basic kernel or 360 

the fused kernel to ensure that the parallel details are completely transparent to the 361 

modellers. 362 

 363 

3.4 Portable program for different backend platforms 364 

With dynamic code generation and JIT compilation technology, OpenArray can be 365 

easily migrated to different backend platforms. Currently, we have designed the 366 

corresponding source code generation module for Intel CPU and Sunway processors in 367 

OpenArray. 368 

 369 

The Sunway TaihuLight is the third fastest supercomputer in the world, with a 370 

LINPACK benchmark rating of 93 Petaflops provided by a multi-core Sunway 371 

processor that includes 4 core-groups, each of which consists of 64 computing 372 

processing elements (CPEs) and a management processing element (MPE) (Qiao et al., 373 

2017). To make the most of the computing resources of the Sunway TaihuLight, we 374 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



14 

 

generate kernel functions for the MPE, which is responsible for the thread control, and 375 

CPE, which performs the computations. The kernel functions are fully optimized with 376 

several code optimization techniques (Pugh, 1991) such as loop tiling, loop aligning, 377 

single-instruction multiple-date (SIMD) vectorization, and function inline. In addition, 378 

due to the high memory access latency of CPEs, we accelerate data access by providing 379 

instructions for direct memory access in the kernel to transfer data between the main 380 

memory and local memory (Fu et al., 2017). 381 

 382 

4. Implementation of GOMO 383 

In this section, we introduce how to implement a practical ocean model using 384 

OpenArray. The most important step is to derive the primitive discrete governing 385 

equations in operator expression form, then the following work will be completed by 386 

OpenArray. 387 

 388 

The fundamental equations of GOMO are derived from POM. GOMO features a 389 

bottom-following, free-surface, staggered Arakawa C grid. To effectively evolve the 390 

rapid surface fluctuations, GOMO uses the mode-splitting algorithm to address the fast 391 

propagating surface gravity waves and slow propagating internal waves in barotropic 392 

(external) and baroclinic (internal) modes, respectively. The details of the continuous 393 

governing equations, the corresponding operator expression form and the descriptions 394 

of all the variables used in GOMO are listed in the Appendix A, Appendix B, and 395 

Appendix C, respectively. 396 

 397 

Figure 8 shows the basic flow diagram of GOMO. At the beginning of the workflow, 398 

we initialize OpenArray to make all operators suitable for GOMO. After loading the 399 

initial values and the model parameters, the distance information is input into the 400 

differential operators through grid binding. In the external mode, the main consumption 401 

is computing the 2-dimensional sea surface elevation η and column-averaged velocity 402 

(Ua, Va). In the internal mode, 3-dimensional array computations predominate in order 403 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



15 

 

to calculate baroclinic motions (U, V, W), tracers (T, S, ρ), and turbulence closure sub-404 

model (q2, q2l) (Mellor and Yamada, 1982), where (U, V, W) are the velocity fields in 405 

the x, y and 𝜎𝜎 directions, (T, S, ρ) are the potential temperature, the salinity and the 406 

density. (q2/2, q2l/2) are the turbulence kinetic energy and production of turbulence 407 

kinetic energy with turbulence length scale. 408 

 409 

Because the complicated parallel optimization and tuning processes are decoupled from 410 

the ocean modelling, we completely implemented GOMO based on OpenArray in only 411 

4 weeks, whereas implementation may take several months or even longer when using 412 

the MPI or CUDA library. 413 

 414 

In comparison with the existing POM and its multiple variations, to name a few, Stony 415 

Brook Parallel Ocean Model (sbPOM), mpiPOM and POMgpu, GOMO has less code 416 

but is more powerful in terms of compatibility. As shown in Table 3, the serial version 417 

of POM (POM2k) contains 3521 lines of code. sbPOM and mpiPOM are parallelized 418 

using MPI, while POMgpu is based on MPI and CUDA-C. The codes of sbPOM, 419 

mpiPOM and POMgpu are extended to 4801, 9680 and 30443 lines. In contrast, the 420 

code of GOMO is decreased to 1860 lines. Moreover, GOMO completes the same 421 

function as the other approaches while using the least amount of code (Table 4). 422 

 423 

In addition, poor portability considerably restricts the use of advanced hardware in 424 

oceanography. With the advantages of OpenArray, GOMO is adaptable to different 425 

hardware architectures, such as the Sunway processor. The modellers do not need to 426 

modify any code when changing platforms, completely eliminating the heavy burden 427 

of transmitting code. As computing platforms become increasingly diverse and 428 

complex, GOMO becomes more powerful and attractive than the machine-dependent 429 

models. 430 

 431 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



16 

 

5、Experimental results 432 

In this section, we first evaluate the basic performance of OpenArray using benchmark 433 

tests on a single CPU platform. After checking the correctness of GOMO through an 434 

ideal seamount test case, we use GOMO to further test the scalability and efficiency of 435 

OpenArray.  436 

 437 

5.1 Benchmark testing 438 

We choose four typical PDEs and their implementations from Rodinia v3.1, which is a 439 

benchmark suite for heterogeneous computing (Che et al., 2009), as the original version. 440 

For comparison, we re-implement these four PDEs using OpenArray. As shown in 441 

Table 5, the 2D continuity equation is used to solve sea surface height, and its 442 

continuous form is shown in Eq. (1). The 2D heat diffusion equation is a parabolic PDE 443 

that describes the distribution of heat over time in a given region. Hotspot is a thermal 444 

simulation used for estimating processor temperature on structured grids (Che et al., 445 

2009; Huang et al., 2006). We tested one 2-dimensional case (Hotspot2D) and one 3-446 

dimensional case (Hotspot3D) of this program. The average runtime for 100 iterations 447 

is taken as the performance metric. All tests are executed on a single workstation with 448 

an Intel Xeon E5-2650 CPU. The experimental results show that the performance of 449 

OpenArray versions is comparable to the original versions. 450 

 451 

5.2 Validation tests of GOMO 452 

The seamount problem proposed by Beckman and Haidvogel is a widely used ideal test 453 

case for regional ocean models (Beckmann and Haidvogel, 1993). It is a stratified 454 

Taylor column problem, which simulates the flow over an isolated seamount with a 455 

constant salinity and a reference vertical temperature stratification. An eastward 456 

horizontal current of 0.1 m/s is added at model initialization. The southern and northern 457 

boundaries are closed. If the Rossby number is small, an obvious anticyclonic 458 

circulation is trapped by the mount in the deep water. 459 

 460 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



17 

 

Using the seamount test case, we compare GOMO and sbPOM results. The 461 

configurations of both models are exactly the same. Figure 9 shows that GOMO and 462 

sbPOM both capture the anticyclonic circulation at 3500 metres depth. The shaded plot 463 

shows the surface elevation, and the array plot shows the current at 3500 metres. Figure 464 

9(a), 9(b), and 9(c) are the results of GOMO, sbPOM, and the difference (GOMO-465 

sbPOM), respectively. The differences in the surface elevation and deep currents 466 

between the two models are negligible (Fig. 9(c)).  467 

   468 

5.3 The weak and strong scalability of GOMO 469 

The seamount test case is used to compare the performance of sbPOM and GOMO in 470 

a parallel environment. Figure 10(a) shows the result of a strong scaling evaluation, in 471 

which the model size is fixed at 2048×2048×50. The dashed line indicates the ideal 472 

speedup. For the largest parallelisms with 4096 processes, GOMO and sbPOM achieve 473 

91% and 92% parallel efficiency, respectively. Figure 10(b) shows the weak scalability 474 

of sbPOM and GOMO. In the weak scaling test, the model size for each process is fixed 475 

at 128×128×50, and the number of processes is gradually increased from 16 to 4096. 476 

Taking the performance of 16 processes as a baseline, we determine that the parallel 477 

efficiencies of GOMO and sbPOM using 4096 processes are 99.0% and 99.2%, 478 

respectively. 479 

 480 

5.4 Testing on the Sunway platform 481 

The strong scalability of GOMO is also tested on the Sunway TaihuLight 482 

supercomputer. Supposing that the baseline is the runtime of GOMO at 10000 cores 483 

with a grid size of 4096×4096×50, the parallel efficiency of GOMO can still reach 85% 484 

at 150000 cores, as shown in Fig. 11. However, we notice that the scalability declines 485 

sharply when the number of cores exceeds 150000. There are two reasons leading to 486 

this decline. First, the block size assigned to each core decreases as the number of cores 487 

increases, causing more communication during boundary region updating. Second, 488 

some processes cannot be accelerated even though more computing resources are 489 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



18 

 

available; for example, the time spent on creating the computation graph, generating 490 

the fusion kernels, and compiling the JIT cannot be reduced. In a sense, OpenArray 491 

performs better when processing large-scale data, and GOMO is more suitable for high-492 

resolution scenarios. In the future, we will further optimize the communication and 493 

graph-creating modules to improve the efficiency for large-scale cores. 494 

 495 

6. Conclusion 496 

We designed a simple computing library (OpenArray) to decouple ocean modelling and 497 

parallel computing. OpenArray provides twelve basic operators that are abstracted from 498 

PDEs and extended to ocean model governing equations. These operators feature user-499 

friendly interfaces and an implicit parallelization ability. Meanwhile, some state-of-art 500 

optimization mechanisms, including computation graphing, kernel fusion, dynamic 501 

source code generation and JIT compiling, are applied to boost the performance. The 502 

experimental results prove that the performance of a program using OpenArray is 503 

comparable to that of well-designed programs using Fortran. Based on OpenArray, we 504 

implement a practical ocean model (GOMO) with a high productivity, an enhanced 505 

readability and an excellent scalable performance. Moreover, GOMO shows high 506 

scalability on the Sunway platform. Although more realistic tests are 507 

needed, OpenArray may signal the beginning of a new frontier in future ocean 508 

modelling through ingesting basic operators and cutting-edge computing techniques. 509 

 510 

Code availability. OpenArray v1.0 is available at 511 

https://github.com/hxmhuang/OpenArray_CXX. GOMO is available at 512 

https://github.com/hxmhuang/GOMO. 513 

 514 

Appendix A: Continuous governing equations 515 

The equations governing the baroclinic (internal) mode in GOMO are the 3-516 

dimensional hydrostatic primitive equations. 517 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



19 

 

 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

= 0 (A1) 518 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑈𝑈2𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

− 𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑔𝑔𝑔𝑔 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜎𝜎
�𝐾𝐾𝑀𝑀
𝐷𝐷

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
� +519 

𝑔𝑔𝐷𝐷2

𝜌𝜌0

𝜕𝜕
𝜕𝜕𝜕𝜕 ∫

0
𝜎𝜎 𝜌𝜌𝑑𝑑𝜎𝜎′ −

𝑔𝑔𝑔𝑔
𝜌𝜌0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∫

0
𝜎𝜎 𝜎𝜎′

𝜕𝜕𝜌𝜌
𝜕𝜕𝜎𝜎′

𝑑𝑑𝜎𝜎′ + 𝐹𝐹𝑢𝑢 (A2) 520 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑉𝑉2𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

+ 𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑔𝑔𝑔𝑔 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜎𝜎
�𝐾𝐾𝑀𝑀
𝐷𝐷

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
� +521 

𝑔𝑔𝐷𝐷2

𝜌𝜌0

𝜕𝜕
𝜕𝜕𝜕𝜕 ∫

0
𝜎𝜎 𝜌𝜌𝑑𝑑𝜎𝜎′ −

𝑔𝑔𝑔𝑔
𝜌𝜌0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ∫

0
𝜎𝜎 𝜎𝜎′

𝜕𝜕𝜌𝜌
𝜕𝜕𝜎𝜎′

𝑑𝑑𝜎𝜎′ + 𝐹𝐹𝑣𝑣 (A3) 522 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

= 𝜕𝜕
𝜕𝜕𝜎𝜎
�𝐾𝐾𝐻𝐻

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
� + 𝐹𝐹𝑇𝑇 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎
 (A4) 523 

 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎

= 𝜕𝜕
𝜕𝜕𝜎𝜎
�𝐾𝐾𝐻𝐻

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
� + 𝐹𝐹𝑆𝑆 (A5) 524 

 𝜌𝜌 = 𝜌𝜌(𝑇𝑇, 𝑆𝑆,𝑝𝑝) (A6) 525 

 𝜕𝜕𝑞𝑞2𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑞𝑞2𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑞𝑞2𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑞𝑞2

𝜕𝜕𝜎𝜎
= 𝜕𝜕

𝜕𝜕𝜎𝜎
�𝐾𝐾𝑞𝑞
𝐷𝐷
𝜕𝜕𝑞𝑞2

𝜕𝜕𝜎𝜎
�+ 2𝐾𝐾𝑀𝑀

𝐷𝐷
��𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
�
2
� +526 

2𝑔𝑔
𝜌𝜌0
𝐾𝐾𝐻𝐻

𝜕𝜕𝜌𝜌
𝜕𝜕𝜎𝜎
− 2𝐷𝐷𝑞𝑞3

𝐵𝐵1𝑙𝑙
+ 𝐹𝐹𝑞𝑞2 (A7) 527 

 𝜕𝜕𝑞𝑞2𝑙𝑙𝑙𝑙
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑞𝑞2𝑙𝑙𝑙𝑙
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑞𝑞2𝑙𝑙𝑙𝑙
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕𝑞𝑞2𝑙𝑙
𝜕𝜕𝜎𝜎

= 𝜕𝜕
𝜕𝜕𝜎𝜎
�𝐾𝐾𝑞𝑞
𝐷𝐷
𝜕𝜕𝑞𝑞2𝑙𝑙
𝜕𝜕𝜎𝜎

� + 𝐸𝐸1𝑙𝑙 �
𝐾𝐾𝑀𝑀
𝐷𝐷
��𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎
�
2

+528 

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎
�
2
� + 𝑔𝑔𝑔𝑔3

𝜌𝜌0
𝐾𝐾𝐻𝐻

𝜕𝜕𝜌𝜌
𝜕𝜕𝜎𝜎
�𝑊𝑊� − 𝐷𝐷𝑞𝑞3

𝐵𝐵1
+ 𝐹𝐹𝑞𝑞2𝑙𝑙 (A8) 529 

 530 

Where 𝐹𝐹𝑢𝑢, 𝐹𝐹𝑣𝑣, 𝐹𝐹𝑞𝑞2, and 𝐹𝐹𝑞𝑞2𝑙𝑙 are horizontal kinematic viscosity terms of u, v, 𝑞𝑞2, and 531 

𝑞𝑞2𝑙𝑙, respectivly. 𝐹𝐹𝑇𝑇 and 𝐹𝐹𝑆𝑆 are horizontal diffusion terms of T and S respectivly. 𝑊𝑊�  532 

is the wall proximity function. 533 

 𝐹𝐹𝑢𝑢 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(2𝐴𝐴𝑀𝑀𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) + 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐴𝐴𝑀𝑀𝐷𝐷(𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
)� (A9) 534 

 𝐹𝐹𝑣𝑣 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(2𝐴𝐴𝑀𝑀𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) + 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐴𝐴𝑀𝑀𝐷𝐷(𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
)� (A10) 535 

 𝐹𝐹𝑇𝑇 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝐻𝐻𝐻𝐻
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝐻𝐻𝐻𝐻
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) (A11) 536 

 𝐹𝐹𝑆𝑆 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝐻𝐻𝐻𝐻
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝐻𝐻𝐻𝐻
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) (A12) 537 

 𝐹𝐹𝑞𝑞2 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝑀𝑀𝐻𝐻
𝜕𝜕𝑞𝑞2

𝜕𝜕𝜕𝜕
) + 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝐴𝐴𝑀𝑀𝐻𝐻

𝜕𝜕𝑞𝑞2

𝜕𝜕𝜕𝜕
) (A13) 538 

 𝐹𝐹𝑞𝑞2𝑙𝑙 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝑀𝑀𝐻𝐻
𝜕𝜕𝑞𝑞2𝑙𝑙
𝜕𝜕𝜕𝜕

) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐴𝐴𝑀𝑀𝐻𝐻
𝜕𝜕𝑞𝑞2𝑙𝑙
𝜕𝜕𝜕𝜕

) (A14) 539 

𝑊𝑊� = 1 + 𝐸𝐸2𝑙𝑙
𝜅𝜅
� 1
𝜂𝜂−𝑧𝑧

+ 1
H−𝑧𝑧

�  (A15) 540 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



20 

 

The equations governing the barotropic (external) mode in GOMO are obtained by 541 

vertically integrating the baroclinic equations. 542 

 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑈𝑈𝐴𝐴𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑉𝑉𝐴𝐴𝐷𝐷
𝜕𝜕𝜕𝜕

= 0 (A16) 543 

 𝜕𝜕𝑈𝑈𝐴𝐴𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝑈𝑈𝐴𝐴)2𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑈𝑈𝐴𝐴𝑉𝑉𝐴𝐴𝐷𝐷
𝜕𝜕𝜕𝜕

− 𝑓𝑓𝑉𝑉𝐴𝐴𝐷𝐷 + 𝑔𝑔𝑔𝑔 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

= 𝐹𝐹�𝑢𝑢𝑎𝑎 − 𝑤𝑤𝑤𝑤(0) +544 

𝑤𝑤𝑤𝑤(−1) − 𝑔𝑔𝑔𝑔
𝜌𝜌0
∫0−1 ∫

0
𝜎𝜎 �𝐷𝐷

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜎𝜎′ 𝜕𝜕𝜌𝜌

𝜕𝜕𝜎𝜎
� 𝑑𝑑𝜎𝜎′𝑑𝑑𝜎𝜎 + 𝐺𝐺𝑢𝑢𝑎𝑎  (A17) 545 

 𝜕𝜕𝑉𝑉𝐴𝐴𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑈𝑈𝐴𝐴𝑉𝑉𝐴𝐴𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(𝑉𝑉𝐴𝐴)2𝐷𝐷
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑈𝑈𝐴𝐴𝐷𝐷 + 𝑔𝑔𝑔𝑔 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

= 𝐹𝐹�𝑣𝑣𝑎𝑎 − 𝑤𝑤𝑤𝑤(0) +546 

𝑤𝑤𝑤𝑤(−1) − 𝑔𝑔𝑔𝑔
𝜌𝜌0
∫0−1 ∫

0
𝜎𝜎 �𝐷𝐷

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜎𝜎′ 𝜕𝜕𝜌𝜌

𝜕𝜕𝜎𝜎
� 𝑑𝑑𝜎𝜎′𝑑𝑑𝜎𝜎 + 𝐺𝐺𝑣𝑣𝑎𝑎 (A18) 547 

 548 

Where 𝐹𝐹�𝑢𝑢𝑎𝑎  and 𝐹𝐹�𝑣𝑣𝑎𝑎  are the horizontal kinematic viscosity terms of 𝑈𝑈𝐴𝐴  and 𝑉𝑉𝐴𝐴 549 

respectivly. 𝐺𝐺𝑢𝑢𝑎𝑎  and 𝐺𝐺𝑣𝑣𝑎𝑎  are the dispersion terms of 𝑈𝑈𝐴𝐴  and 𝑉𝑉𝐴𝐴  respectivly. The 550 

subscript ’A’ denotes vertical integration. 551 

 552 

 𝐹𝐹�𝑢𝑢𝑎𝑎 = 𝜕𝜕
𝜕𝜕𝜕𝜕
�2𝐻𝐻(𝐴𝐴𝐴𝐴𝑀𝑀) 𝜕𝜕𝑈𝑈𝐴𝐴

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐻𝐻(𝐴𝐴𝐴𝐴𝑀𝑀) �𝜕𝜕𝑈𝑈𝐴𝐴

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑉𝑉𝐴𝐴

𝜕𝜕𝜕𝜕
�� (A19) 553 

 𝐹𝐹�𝑣𝑣𝑎𝑎 = 𝜕𝜕
𝜕𝜕𝜕𝜕
�2𝐻𝐻(𝐴𝐴𝐴𝐴𝑀𝑀) 𝜕𝜕𝑉𝑉𝐴𝐴

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝐻𝐻(𝐴𝐴𝐴𝐴𝑀𝑀) �𝜕𝜕𝑈𝑈𝐴𝐴

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑉𝑉𝐴𝐴

𝜕𝜕𝜕𝜕
�� (A20) 554 

 𝐺𝐺𝑢𝑢𝑎𝑎 = 𝜕𝜕2(𝑈𝑈𝐴𝐴)2𝐷𝐷
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑈𝑈𝐴𝐴𝑉𝑉𝐴𝐴𝐷𝐷
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

− 𝐹𝐹�𝑢𝑢𝑎𝑎 −
𝜕𝜕2(𝑈𝑈2)𝐴𝐴𝐷𝐷

𝜕𝜕𝑥𝑥2
− 𝜕𝜕2(𝑈𝑈𝑈𝑈)𝐴𝐴𝐷𝐷

𝜕𝜕𝑦𝑦2
+ (𝐹𝐹𝑢𝑢)𝐴𝐴 (A21) 555 

 𝐺𝐺𝑣𝑣𝑎𝑎 = 𝜕𝜕2𝑈𝑈𝐴𝐴𝑉𝑉𝐴𝐴𝐷𝐷
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜕𝜕2(𝑉𝑉𝐴𝐴)2𝐷𝐷
𝜕𝜕𝑦𝑦2

− 𝐹𝐹�𝑣𝑣𝑎𝑎 −
𝜕𝜕2(𝑈𝑈𝑈𝑈)𝐴𝐴𝐷𝐷

𝜕𝜕𝑥𝑥2
− 𝜕𝜕2(𝑉𝑉2)𝐴𝐴𝐷𝐷

𝜕𝜕𝑦𝑦2
+ (𝐹𝐹𝑣𝑣)𝐴𝐴 (A22) 556 

 𝑈𝑈𝐴𝐴 = ∫0−1 𝑈𝑈𝑈𝑈𝜎𝜎 (A23) 557 

 𝑉𝑉𝐴𝐴 = ∫0−1 𝑉𝑉𝑉𝑉𝜎𝜎 (A24) 558 

 (𝑈𝑈2)𝐴𝐴 = ∫0−1 𝑈𝑈
2𝑑𝑑𝜎𝜎 (A25) 559 

 (𝑈𝑈𝑈𝑈)𝐴𝐴 = ∫0−1 𝑈𝑈𝑈𝑈𝑈𝑈𝜎𝜎 (A26) 560 

 (𝑉𝑉2)𝐴𝐴 = ∫0−1 𝑉𝑉
2𝑑𝑑𝜎𝜎 (A27) 561 

 (𝐹𝐹𝑢𝑢)𝐴𝐴 = ∫0−1 𝐹𝐹𝑢𝑢𝑑𝑑𝜎𝜎 (A28) 562 

 (𝐹𝐹𝑣𝑣)𝐴𝐴 = ∫0−1 𝐹𝐹𝑣𝑣𝑑𝑑𝜎𝜎 (A29) 563 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



21 

 

 𝐴𝐴𝐴𝐴𝑀𝑀 = ∫0−1 (𝐴𝐴𝑀𝑀)𝑑𝑑𝜎𝜎 (A30) 564 

 565 

Appendix B: Discrete governing equations 566 

The discrete governing equations of baroclinic (internal) mode expressed by operators 567 

are shown as below:  568 

 𝜂𝜂𝑡𝑡+1−𝜂𝜂𝑡𝑡−1

2𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝛿𝛿𝑓𝑓𝑥𝑥(𝐷𝐷𝑏𝑏

𝑥𝑥
𝑈𝑈) + 𝛿𝛿𝑓𝑓

𝑦𝑦(𝐷𝐷𝑏𝑏
𝑦𝑦
𝑉𝑉) + 𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊) = 0 (B1) 569 

 (𝐷𝐷𝑏𝑏
𝑥𝑥
𝑈𝑈)𝑡𝑡+1−(𝐷𝐷𝑏𝑏

𝑥𝑥
𝑈𝑈)𝑡𝑡−1

2𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝛿𝛿𝑏𝑏𝑥𝑥 �(𝐷𝐷𝑏𝑏

𝑥𝑥
𝑈𝑈)𝑓𝑓

𝑥𝑥
𝑈𝑈𝑓𝑓
𝑥𝑥
� + 𝛿𝛿𝑓𝑓

𝑦𝑦 �(𝐷𝐷𝑏𝑏
𝑦𝑦
𝑉𝑉)𝑏𝑏

𝑥𝑥
𝑈𝑈𝑏𝑏
𝑦𝑦
� +570 

𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊𝑏𝑏
𝑥𝑥
𝑈𝑈𝑏𝑏
𝑧𝑧
) − (𝑓𝑓𝑉𝑉𝑓𝑓

𝑦𝑦
𝐷𝐷)

𝑏𝑏

𝑥𝑥
− (𝑓𝑓𝑉𝑉𝑓𝑓

𝑦𝑦
𝐷𝐷)

𝑏𝑏

𝑥𝑥
+ 𝑔𝑔𝐷𝐷𝑏𝑏

𝑥𝑥
𝛿𝛿𝑏𝑏𝑥𝑥(𝜂𝜂) = 𝛿𝛿𝑏𝑏𝑧𝑧 �

𝐾𝐾𝑀𝑀𝑏𝑏
𝑥𝑥

(𝐷𝐷𝑏𝑏
𝑥𝑥

)𝑡𝑡+1
𝛿𝛿𝑓𝑓𝑧𝑧(𝑈𝑈𝑡𝑡+1)� +571 

𝑔𝑔(𝐷𝐷𝑏𝑏
𝑥𝑥

)2

𝜌𝜌0
∫0𝜎𝜎 �𝛿𝛿𝑏𝑏

𝑥𝑥(𝜌𝜌𝑏𝑏
𝑧𝑧)− 𝜎𝜎  𝛿𝛿𝑏𝑏

𝑥𝑥(𝐷𝐷)

𝐷𝐷𝑏𝑏
𝑥𝑥 𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌𝑏𝑏

𝑥𝑥)� 𝑑𝑑𝜎𝜎′ + 𝐹𝐹𝑢𝑢 (B2) 572 

 (𝐷𝐷𝑏𝑏
𝑦𝑦
𝑉𝑉)𝑡𝑡+1−(𝐷𝐷𝑏𝑏

𝑦𝑦
𝑉𝑉)𝑡𝑡−1

2𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝛿𝛿𝑓𝑓𝑥𝑥 �(𝐷𝐷𝑏𝑏

𝑥𝑥
𝑈𝑈)𝑏𝑏

𝑦𝑦
𝑉𝑉𝑏𝑏
𝑥𝑥
� + 𝛿𝛿𝑏𝑏

𝑦𝑦 �(𝐷𝐷𝑏𝑏
𝑦𝑦
𝑉𝑉)𝑓𝑓

𝑦𝑦
𝑉𝑉𝑓𝑓
𝑦𝑦
� +573 

𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊𝑏𝑏
𝑦𝑦
𝑉𝑉𝑏𝑏
𝑧𝑧
) + (𝑓𝑓𝑈𝑈𝑓𝑓

𝑥𝑥
𝐷𝐷)

𝑏𝑏

𝑦𝑦
+ (𝑓𝑓𝑈𝑈𝑓𝑓

𝑥𝑥
𝐷𝐷)

𝑏𝑏

𝑦𝑦
+ 𝑔𝑔𝐷𝐷𝑏𝑏

𝑦𝑦
𝛿𝛿𝑏𝑏
𝑦𝑦(𝜂𝜂) = 𝛿𝛿𝑏𝑏𝑧𝑧 �

𝐾𝐾𝑀𝑀𝑏𝑏
𝑦𝑦

(𝐷𝐷𝑏𝑏
𝑦𝑦

)𝑡𝑡+1
𝛿𝛿𝑓𝑓𝑧𝑧(𝑉𝑉𝑡𝑡+1)� +574 

𝑔𝑔(𝐷𝐷𝑏𝑏
𝑦𝑦

)2

𝜌𝜌0
∫0𝜎𝜎 �𝛿𝛿𝑏𝑏

𝑦𝑦(𝜌𝜌𝑏𝑏
𝑧𝑧)− 𝜎𝜎  𝛿𝛿𝑏𝑏

𝑦𝑦(𝐷𝐷)

𝐷𝐷𝑏𝑏
𝑦𝑦 𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌𝑏𝑏

𝑦𝑦)� 𝑑𝑑𝜎𝜎′ + 𝐹𝐹𝑣𝑣 (B3) 575 

 (𝑇𝑇𝑇𝑇)𝑡𝑡+1−(𝑇𝑇𝑇𝑇)𝑡𝑡−1

2𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝛿𝛿𝑓𝑓𝑥𝑥(𝑇𝑇𝑏𝑏

𝑥𝑥
𝑈𝑈𝐷𝐷𝑏𝑏

𝑥𝑥
) + 𝛿𝛿𝑓𝑓

𝑦𝑦(𝑇𝑇𝑏𝑏
𝑦𝑦
𝑉𝑉𝐷𝐷𝑏𝑏

𝑦𝑦
) + 𝛿𝛿𝑓𝑓𝑧𝑧(𝑇𝑇𝑏𝑏

𝑧𝑧
𝑊𝑊) =576 

𝛿𝛿𝑏𝑏𝑧𝑧 �
𝐾𝐾𝐻𝐻
𝐷𝐷𝑡𝑡+1

𝛿𝛿𝑓𝑓𝑧𝑧(𝑇𝑇𝑡𝑡+1)� + 𝐹𝐹𝑇𝑇 + 𝛿𝛿𝑓𝑓𝑧𝑧𝑅𝑅 (B4) 577 

 (𝑆𝑆𝑆𝑆)𝑡𝑡+1−(𝑆𝑆𝑆𝑆)𝑡𝑡−1

2𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝛿𝛿𝑓𝑓𝑥𝑥(𝑆𝑆𝑏𝑏

𝑥𝑥
𝑈𝑈𝐷𝐷𝑏𝑏

𝑥𝑥
) + 𝛿𝛿𝑓𝑓

𝑦𝑦(𝑆𝑆𝑏𝑏
𝑦𝑦
𝑉𝑉𝐷𝐷𝑏𝑏

𝑦𝑦
) + 𝛿𝛿𝑓𝑓𝑧𝑧(𝑆𝑆𝑏𝑏

𝑧𝑧
𝑊𝑊) =578 

𝛿𝛿𝑏𝑏𝑧𝑧 �
𝐾𝐾𝐻𝐻
𝐷𝐷𝑡𝑡+1

𝛿𝛿𝑓𝑓𝑧𝑧(𝑆𝑆𝑡𝑡+1)� + 𝐹𝐹𝑆𝑆 (B5) 579 

 𝜌𝜌 = 𝜌𝜌(𝑇𝑇, 𝑆𝑆,𝑝𝑝) (B6) 580 

 (𝑞𝑞2𝐷𝐷)𝑡𝑡+1−(𝑞𝑞2𝐷𝐷)𝑡𝑡−1

2𝑑𝑑𝑑𝑑𝑑𝑑
    +   𝛿𝛿𝑓𝑓𝑥𝑥(𝑈𝑈𝑏𝑏

𝑧𝑧
𝑞𝑞2𝑏𝑏

𝑥𝑥
𝐷𝐷𝑏𝑏
𝑥𝑥

) + 𝛿𝛿𝑓𝑓
𝑦𝑦(𝑉𝑉𝑏𝑏

𝑧𝑧
𝑞𝑞2𝑏𝑏

𝑦𝑦
𝐷𝐷𝑏𝑏
𝑦𝑦

)   +581 

  𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊𝑞𝑞2)𝑏𝑏
𝑧𝑧

= 𝛿𝛿𝑏𝑏𝑧𝑧 �
𝐾𝐾𝑞𝑞𝑓𝑓

𝑧𝑧

𝐷𝐷𝑡𝑡+1
𝛿𝛿𝑓𝑓𝑧𝑧(𝑞𝑞2)𝑡𝑡+1�   +   2𝐾𝐾𝑀𝑀

𝐷𝐷
��𝛿𝛿𝑏𝑏𝑧𝑧(𝑈𝑈𝑓𝑓

𝑥𝑥
)�
2

+ �𝛿𝛿𝑏𝑏𝑧𝑧(𝑉𝑉𝑓𝑓
𝑦𝑦

)�
2
�   +582 

2𝑔𝑔
𝜌𝜌0
𝐾𝐾𝐻𝐻𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌) − 2𝐷𝐷𝑞𝑞3

𝐵𝐵1𝑙𝑙
+ 𝐹𝐹𝑞𝑞2 (B7) 583 

 (𝑞𝑞2𝑙𝑙𝑙𝑙)𝑡𝑡+1−(𝑞𝑞2𝑙𝑙𝑙𝑙)𝑡𝑡−1

2𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝛿𝛿𝑓𝑓𝑥𝑥(𝑈𝑈𝑏𝑏

𝑧𝑧
𝑞𝑞2𝑙𝑙𝑏𝑏

𝑥𝑥
𝐷𝐷𝑏𝑏
𝑥𝑥

) + 𝛿𝛿𝑓𝑓
𝑦𝑦(𝑉𝑉𝑏𝑏

𝑧𝑧
𝑞𝑞2𝑙𝑙𝑏𝑏

𝑦𝑦
𝐷𝐷𝑏𝑏
𝑦𝑦

) +584 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



22 

 

𝛿𝛿𝑓𝑓𝑧𝑧(𝑊𝑊𝑞𝑞2𝑙𝑙)𝑏𝑏
𝑧𝑧

= 𝛿𝛿𝑏𝑏𝑧𝑧 �
𝐾𝐾𝑞𝑞𝑓𝑓

𝑧𝑧

𝐷𝐷𝑡𝑡+1
𝛿𝛿𝑓𝑓𝑧𝑧(𝑞𝑞2𝑙𝑙)𝑡𝑡+1� + 𝑙𝑙𝐸𝐸1

𝐾𝐾𝑀𝑀
𝐷𝐷
��𝛿𝛿𝑏𝑏𝑧𝑧(𝑈𝑈𝑓𝑓

𝑥𝑥
)�
2

+ �𝛿𝛿𝑏𝑏𝑧𝑧(𝑉𝑉𝑓𝑓
𝑦𝑦

)�
2
�𝑊𝑊� +585 

𝑙𝑙𝐸𝐸1𝐸𝐸3𝑔𝑔
𝜌𝜌0

𝐾𝐾𝐻𝐻𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌)𝑊𝑊� − 𝐷𝐷𝑞𝑞3

𝐵𝐵1
+ 𝐹𝐹𝑞𝑞2𝑙𝑙 (B8) 586 

 587 

Where 𝐹𝐹𝑢𝑢, 𝐹𝐹𝑣𝑣, 𝐹𝐹𝑞𝑞2, and 𝐹𝐹𝑞𝑞2𝑙𝑙 are horizontal kinematic viscosity terms of u, v, 𝑞𝑞2, and 588 

𝑞𝑞2𝑙𝑙, respectivly. 𝐹𝐹𝑇𝑇 and 𝐹𝐹𝑆𝑆 are horizontal diffusion terms of T and S respectivly. 589 

𝐹𝐹𝑢𝑢 = 𝛿𝛿𝑏𝑏𝑥𝑥�2𝐴𝐴𝑀𝑀𝐷𝐷𝛿𝛿𝑓𝑓𝑥𝑥(𝑈𝑈𝑡𝑡−1)� + 𝛿𝛿𝑓𝑓
𝑦𝑦 �(𝐴𝐴𝑀𝑀𝑏𝑏

𝑥𝑥
)
𝑏𝑏

𝑦𝑦
(𝐷𝐷𝑏𝑏

𝑥𝑥
)𝑏𝑏
𝑦𝑦
�𝛿𝛿𝑏𝑏𝑥𝑥(𝑉𝑉)𝑡𝑡−1 + 𝛿𝛿𝑏𝑏

𝑦𝑦(𝑈𝑈)𝑡𝑡−1��  (B9) 590 

𝐹𝐹𝑣𝑣 = 𝛿𝛿𝑏𝑏
𝑦𝑦�2𝐴𝐴𝑀𝑀𝐷𝐷𝛿𝛿𝑓𝑓

𝑦𝑦(𝑉𝑉𝑡𝑡−1)� + 𝛿𝛿𝑓𝑓𝑥𝑥 �(𝐴𝐴𝑀𝑀𝑏𝑏
𝑥𝑥

)
𝑏𝑏

𝑦𝑦
(𝐷𝐷𝑏𝑏

𝑥𝑥
)𝑏𝑏
𝑦𝑦
�𝛿𝛿𝑏𝑏𝑥𝑥(𝑉𝑉)𝑡𝑡−1 + 𝛿𝛿𝑏𝑏

𝑦𝑦(𝑈𝑈)𝑡𝑡−1�� (B10) 591 

𝐹𝐹𝑇𝑇 = 𝛿𝛿𝑓𝑓𝑥𝑥 �𝐴𝐴𝐻𝐻𝑏𝑏
𝑥𝑥
𝐻𝐻𝑏𝑏
𝑥𝑥
𝛿𝛿𝑏𝑏𝑥𝑥(𝑇𝑇𝑡𝑡−1)�+ 𝛿𝛿𝑓𝑓

𝑦𝑦 �𝐴𝐴𝐻𝐻𝑏𝑏
𝑦𝑦
𝐻𝐻𝑏𝑏
𝑦𝑦
𝛿𝛿𝑏𝑏
𝑦𝑦(𝑇𝑇𝑡𝑡−1)�  (B11) 592 

𝐹𝐹𝑆𝑆 = 𝛿𝛿𝑓𝑓𝑥𝑥 �(𝐴𝐴𝐻𝐻𝑏𝑏
𝑥𝑥
𝐻𝐻𝑏𝑏
𝑥𝑥
𝛿𝛿𝑏𝑏𝑥𝑥(𝑆𝑆𝑡𝑡−1)� + 𝛿𝛿𝑓𝑓

𝑦𝑦 �𝐴𝐴𝐻𝐻𝑏𝑏
𝑦𝑦
𝐻𝐻𝑏𝑏
𝑦𝑦
𝛿𝛿𝑏𝑏
𝑦𝑦(𝑆𝑆𝑡𝑡−1)� (B12) 593 

𝐹𝐹𝑞𝑞2   = 𝛿𝛿𝑓𝑓𝑥𝑥 �(𝐴𝐴𝑀𝑀𝑏𝑏
𝑥𝑥

)
𝑏𝑏

𝑧𝑧
𝐻𝐻𝑏𝑏
𝑥𝑥
𝛿𝛿𝑏𝑏𝑥𝑥(𝑞𝑞2)𝑡𝑡−1�   + 𝛿𝛿𝑓𝑓

𝑦𝑦 �𝐴𝐴𝑀𝑀𝑏𝑏
𝑦𝑦

𝑏𝑏

𝑧𝑧
𝐻𝐻𝑏𝑏
𝑦𝑦
𝛿𝛿𝑏𝑏
𝑦𝑦(𝑞𝑞2)𝑡𝑡−1� (B13) 594 

𝐹𝐹𝑞𝑞2𝑙𝑙 = 𝛿𝛿𝑓𝑓𝑥𝑥 �(𝐴𝐴𝑀𝑀𝑏𝑏
𝑥𝑥

)
𝑏𝑏

𝑧𝑧
𝐻𝐻𝑏𝑏
𝑥𝑥
𝛿𝛿𝑏𝑏𝑥𝑥(𝑞𝑞2𝑙𝑙)𝑡𝑡−1� + 𝛿𝛿𝑓𝑓

𝑦𝑦 �𝐴𝐴𝑀𝑀𝑏𝑏
𝑦𝑦

𝑏𝑏

𝑧𝑧
𝐻𝐻𝑏𝑏
𝑦𝑦
𝛿𝛿𝑏𝑏
𝑦𝑦(𝑞𝑞2𝑙𝑙)𝑡𝑡−1� (B14) 595 

 596 

The discrete governing equations of barotropic (external) mode expressed by operators 597 

are shown as below:  598 

 𝜂𝜂𝑡𝑡+1−𝜂𝜂𝑡𝑡−1

2𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝛿𝛿𝑓𝑓𝑥𝑥(𝐷𝐷𝑏𝑏

𝑥𝑥
  𝑈𝑈𝐴𝐴) + 𝛿𝛿𝑓𝑓

𝑦𝑦(𝐷𝐷𝑏𝑏
𝑦𝑦

  𝑉𝑉𝐴𝐴) = 0 (B15) 599 

 (𝐷𝐷𝑏𝑏
𝑥𝑥
𝑈𝑈𝐴𝐴)𝑡𝑡+1−(𝐷𝐷𝑏𝑏

𝑥𝑥
𝑈𝑈𝐴𝐴)𝑡𝑡−1

2𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝛿𝛿𝑏𝑏𝑥𝑥 �(𝐷𝐷𝑏𝑏

𝑥𝑥
𝑈𝑈𝐴𝐴)𝑓𝑓

𝑥𝑥
(𝑈𝑈𝐴𝐴)𝑓𝑓

𝑥𝑥
� + 𝛿𝛿𝑓𝑓

𝑦𝑦 �(𝐷𝐷𝑏𝑏
𝑦𝑦
𝑉𝑉𝐴𝐴)𝑏𝑏

𝑥𝑥
(𝑈𝑈𝐴𝐴)𝑏𝑏

𝑦𝑦
� −600 

�𝑓𝑓𝐴𝐴(𝑉𝑉𝐴𝐴)𝑓𝑓
𝑦𝑦
𝐷𝐷�

𝑏𝑏

𝑥𝑥

− �𝑓𝑓(𝑉𝑉𝐴𝐴)𝑓𝑓
𝑦𝑦
𝐷𝐷�

𝑏𝑏

𝑥𝑥

+ 𝑔𝑔𝐷𝐷𝑏𝑏
𝑥𝑥
𝛿𝛿𝑏𝑏𝑥𝑥(𝜂𝜂) = 𝛿𝛿𝑏𝑏𝑥𝑥�2(𝐴𝐴𝐴𝐴𝑀𝑀)𝐷𝐷𝛿𝛿𝑓𝑓𝑥𝑥[(𝑈𝑈𝐴𝐴)𝑡𝑡−1]� +601 

𝛿𝛿𝑓𝑓
𝑦𝑦 ��(𝐴𝐴𝐴𝐴𝑀𝑀)𝑏𝑏

𝑥𝑥
�
𝑏𝑏

𝑦𝑦

(𝐷𝐷𝑏𝑏
𝑥𝑥

)𝑏𝑏
𝑦𝑦
�𝛿𝛿𝑏𝑏𝑥𝑥(𝑉𝑉𝐴𝐴) + 𝛿𝛿𝑏𝑏

𝑦𝑦(𝑈𝑈𝐴𝐴)�
𝑡𝑡−1

� + 𝜙𝜙𝑥𝑥 (B16) 602 

 (𝐷𝐷𝑏𝑏
𝑦𝑦
𝑉𝑉𝐴𝐴)𝑡𝑡+1−(𝐷𝐷𝑏𝑏

𝑦𝑦
𝑉𝑉𝐴𝐴)𝑡𝑡−1

2𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝛿𝛿𝑓𝑓𝑥𝑥 �(𝐷𝐷𝑏𝑏

𝑥𝑥
𝑈𝑈𝐴𝐴)𝑏𝑏

𝑦𝑦
(𝑉𝑉𝐴𝐴)𝑏𝑏

𝑥𝑥
�+ 𝛿𝛿𝑏𝑏

𝑦𝑦 �(𝐷𝐷𝑏𝑏
𝑦𝑦
𝑉𝑉𝐴𝐴)𝑓𝑓

𝑦𝑦
(𝑉𝑉𝐴𝐴)𝑓𝑓

𝑦𝑦
� +603 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



23 

 

�𝑓𝑓𝐴𝐴(𝑈𝑈𝐴𝐴)𝑓𝑓
𝑥𝑥
𝐷𝐷�

𝑏𝑏

𝑦𝑦

+ �𝑓𝑓(𝑈𝑈𝐴𝐴)𝑓𝑓
𝑥𝑥
𝐷𝐷�

𝑏𝑏

𝑦𝑦

+ 𝑔𝑔𝐷𝐷𝑏𝑏
𝑦𝑦
𝛿𝛿𝑏𝑏
𝑦𝑦(𝜂𝜂) = 𝛿𝛿𝑏𝑏

𝑦𝑦�2(𝐴𝐴𝐴𝐴𝑀𝑀)𝐷𝐷𝛿𝛿𝑓𝑓
𝑦𝑦[(𝑉𝑉𝐴𝐴)𝑡𝑡−1]� +604 

𝛿𝛿𝑓𝑓𝑥𝑥 ��(𝐴𝐴𝐴𝐴𝑀𝑀)𝑏𝑏
𝑥𝑥
�
𝑏𝑏

𝑦𝑦

(𝐷𝐷𝑏𝑏
𝑥𝑥

)𝑏𝑏
𝑦𝑦
�𝛿𝛿𝑏𝑏𝑥𝑥(𝑉𝑉𝐴𝐴) + 𝛿𝛿𝑏𝑏

𝑦𝑦(𝑈𝑈𝐴𝐴)�
𝑡𝑡−1

� + 𝜙𝜙𝑦𝑦 (B17) 605 

 606 

where  607 

 𝜙𝜙𝑥𝑥 = −𝑊𝑊𝑊𝑊(0) + 𝑊𝑊𝑊𝑊(−1) − 𝑔𝑔(𝐷𝐷𝑏𝑏
𝑥𝑥

)2

𝜌𝜌0
∫0−1 ��∫

0
𝜎𝜎 𝛿𝛿𝑏𝑏

𝑥𝑥(𝜌𝜌)𝑏𝑏
𝑧𝑧
𝑑𝑑𝜎𝜎′� 𝑑𝑑𝜎𝜎� +608 

𝑔𝑔𝐷𝐷𝑏𝑏
𝑥𝑥
𝛿𝛿𝑏𝑏
𝑥𝑥𝐷𝐷

𝜌𝜌0
∫0−1 ��∫

0
𝜎𝜎 𝜎𝜎𝑏𝑏

𝑧𝑧𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌𝑏𝑏
𝑥𝑥)� 𝑑𝑑𝜎𝜎� + 𝐺𝐺𝑥𝑥 (B18) 609 

 𝜙𝜙𝑦𝑦 = −𝑊𝑊𝑊𝑊(0) + 𝑊𝑊𝑊𝑊(−1) − 𝑔𝑔(𝐷𝐷𝑏𝑏
𝑦𝑦

)2

𝜌𝜌0
∫0−1 ��∫

0
𝜎𝜎 𝛿𝛿𝑏𝑏

𝑦𝑦(𝜌𝜌)𝑏𝑏
𝑧𝑧
𝑑𝑑𝜎𝜎′� 𝑑𝑑𝜎𝜎� +610 

𝑔𝑔𝐷𝐷𝑏𝑏
𝑦𝑦
𝛿𝛿𝑏𝑏
𝑦𝑦𝐷𝐷

𝜌𝜌0
∫0−1 ��∫

0
𝜎𝜎 𝜎𝜎𝑏𝑏

𝑧𝑧𝛿𝛿𝑏𝑏𝑧𝑧(𝜌𝜌𝑏𝑏
𝑦𝑦)� 𝑑𝑑𝜎𝜎� + 𝐺𝐺𝑦𝑦 (B19) 611 

 612 
  613 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



24 

 

Appendix C: Descriptions of symbols 614 

The description of each symbol in the governing equations is list as below: 615 

Table C1. Descriptions of symbols 616 

Symbol Description 

η Free surface elevation 

H Bottom topography 

ua, va Vertical average velocity in x, y direction, respectively 

U, V, W Velocity in x, y, σ direction, respectively 

D Fluid column depth 

f The Coriolis parameter 

g The gravitational acceleration  

ρ0 Constant density  

ρ Situ density 

T Potential temperature 

S Salinity 

R Surface solar radiation incident 

q2/2 Turbulence kinetic energy 

l Turbulence length scale 

q2l/2 Production of turbulence kinetic energy and turbulence 

length scale 

dti Time step of baroclinic mode 

dte Time step of barotropic mode 

dx Grid increment in x direction 

dy Grid increment in y direction 

AM Horizontal kinematic viscosity 

AH Horizontal heat diffusivity 

KM Vertical kinematic viscosity  

KH Vertical mixing coefficient of heat and salinity 

Kq Vertical mixing coefficient of turbulence kinetic energy 

617 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



25 

 

Author contributions. Xiaomeng Huang, Xing Huang, DW, QW, and SZ designed 618 

OpenArray. Xing Huang, MW, YG, and QT implemented and tested GOMO. 619 

Xiaomeng Huang and Xing Huang led the writing of this paper with contributions from 620 

all other coauthors. 621 

 622 

Competing interests. The authors declare that they have no conflict of interest. 623 

 624 

Acknowledgements. Xiaomeng Huang is supported by a grant from the State’s Key 625 

Project of Research and Development Plan (2016YFB0201100) and the National 626 

Natural Science Foundation of China (41776010). Xing Huang is supported by a grant 627 

from the State’s Key Project of Research and Development Plan (2018YFB0505000).  628 

Shixun Zhang is supported by a grant from the State’s Key Project of Research and 629 

Development Plan (2017YFC1502200) and Qingdao National Laboratory for Marine 630 

Science and Technology (QNLM2016ORP0108). Zhenya Song is supported by 631 

National Natural Science Foundation of China (U1806205) and AoShan Talents 632 

Cultivation Excellent Scholar Program Supported by Qingdao National Laboratory for 633 

Marine Science and Technology (2017ASTCP-ES04). 634 

 635 

References 636 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, 637 

S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, 638 

D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y. and 639 

Zheng, X.: TensorFlow: A System for Large-Scale Machine Learning, in 12th 640 

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 641 

16), pp. 265–283, {USENIX} Association, Savannah, GA. [online] Available from: 642 

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi, 643 

2016. 644 

Adcroft, A., Campin, J.-M., Dutkiewicz, S., Constantinos, E., Ferreira, D., Forget, G., 645 

Fox-Kemper, B., Heimbach, P., Hill, C., Hill, E., Hill, H., Jahn, O., Losch, M., 646 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



26 

 

Marshall, J., Maze, G., Menemenlis, D. and Molod, A.: MITgcm User Manual, 647 

Intern. Doc., doi:1721.1/117188, 2017. 648 

Alexander, K. and Easterbrook, S. M.: The software architecture of climate models: A 649 

graphical comparison of CMIP5 and EMICAR5 configurations, Geosci. Model Dev., 650 

8(4), 1221–1232, doi:10.5194/gmd-8-1221-2015, 2015. 651 

Arakawa, A. and Lamb, V. R.: A Potential Enstrophy and Energy Conserving Scheme 652 

for the Shallow Water Equations, Mon. Weather Rev., doi:10.1175/1520-653 

0493(1981)109<0018:APEAEC>2.0.CO;2, 1981. 654 

Bae, H., Mustafa, D., Lee, J. W., Aurangzeb, Lin, H., Dave, C., Eigenmann, R. and 655 

Midkiff, S. P.: The Cetus source-to-source compiler infrastructure: Overview and 656 

evaluation, in International Journal of Parallel Programming., 2013. 657 

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., 658 

Bouchard, N., Warde-Farley, D. and Bengio, Y.: Theano: new features and speed 659 

improvements, CoRR, abs/1211.5 [online] Available from: 660 

http://arxiv.org/abs/1211.5590, 2012. 661 

Beckmann, A. and Haidvogel, D. B.: Numerical simulation of flow around a tall 662 

isolated seamount. Part I: problem formulation and model accuracy, J. Phys. 663 

Oceanogr., 23(8), 1736–1753, doi:10.1175/1520-664 

0485(1993)023<1736:NSOFAA>2.0.CO;2, 1993. 665 

Bloss, A., Hudak, P. and Young, J.: Code optimizations for lazy evaluation, Lisp Symb. 666 

Comput., doi:10.1007/BF01806169, 1988. 667 

Blumberg, A. F. and Mellor, G. L.: A description of a three-dimensional coastal ocean 668 

circulation model, , (January 1987), 1–16, doi:10.1029/CO004p0001, 1987. 669 

Bonan, G. B. and Doney, S. C.: Climate, ecosystems, and planetary futures: The 670 

challenge to predict life in Earth system models, Science (80-. )., 671 

doi:10.1126/science.aam8328, 2018. 672 

Bretherton, C., Balaji, V., Delworth, T. et al: A National Strategy for Advancing 673 

Climate Modeling, National Academies Press., 2012. 674 

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S. H. and Skadron, K.: 675 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



27 

 

Rodinia: A benchmark suite for heterogeneous computing, in Proceedings of the 676 

2009 IEEE International Symposium on Workload Characterization, IISWC 2009., 677 

2009. 678 

Chen, C., Liu, H. and Beardsley, R. C.: An unstructured grid, finite-volume, three-679 

dimensional, primitive equations ocean model: Application to coastal ocean and 680 

estuaries, J. Atmos. Ocean. Technol., doi:10.1175/1520-681 

0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003. 682 

Collins, M., Minobe, S., Barreiro, M., Bordoni, S., Kaspi, Y., Kuwano-Yoshida, A., 683 

Keenlyside, N., Manzini, E., O’Reilly, C. H., Sutton, R., Xie, S. P. and Zolina, O.: 684 

Challenges and opportunities for improved understanding of regional climate 685 

dynamics, Nat. Clim. Chang., 8(2), 101–108, doi:10.1038/s41558-017-0059-8, 686 

2018. 687 

Corliss, G. and Griewank, A.: Operator Overloading as an Enabling Technology for 688 

Automatic Differentiation, 1994. 689 

van Engelen, R. a.: ATMOL: A Domain-Specific Language for Atmospheric Modeling, 690 

J. Comput. Inf. Technol., 9(4), 289–303, doi:10.2498/cit.2001.04.02, 2001. 691 

Fringer, O. B., Gerritsen, M. and Street, R. L.: An unstructured-grid, finite-volume, 692 

nonhydrostatic, parallel coastal ocean simulator, Ocean Model., 693 

doi:10.1016/j.ocemod.2006.03.006, 2006. 694 

Fu, H., He, C., Chen, B., Yin, Z., Zhang, Z., Zhang, W., Zhang, T., Xue, W., Liu, W., 695 

Yin, W. and others: 18.9-Pflops nonlinear earthquake simulation on Sunway 696 

TaihuLight: enabling depiction of 18-Hz and 8-meter scenarios, in Proceedings of 697 

the International Conference for High Performance Computing, Networking, 698 

Storage and Analysis., 2017. 699 

Griffies, S. M.: Elements of the modular ocean model (MOM), GFDL Ocean Gr. Tech. 700 

Rep, 7(C), 620, 2012. 701 

Griffies, S. M., Böning, C., Bryan, F. O., Chassignet, E. P., Gerdes, R., Hasumi, H., 702 

Hirst, A., Treguier, A.-M. and Webb, D.: Developments in ocean climate modelling, 703 

Ocean Model., 2(3–4), 123–192, doi:10.1016/S1463-5003(00)00014-7, 2000. 704 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



28 

 

Gysi, T., Osuna, C., Fuhrer, O., Bianco, M. and Schulthess, T. C.: STELLA: A Domain-705 

specific Tool for Structured Grid Methods in Weather and Climate Models, Proc. 706 

Int. Conf. High Perform. Comput. Networking, Storage Anal. - SC ’15, 1–12, 707 

doi:10.1145/2807591.2807627, 2015. 708 

Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K. and Stan, M. 709 

R.: HotSpot: A compact thermal modeling methodology for early-stage VLSI design, 710 

IEEE Trans. Very Large Scale Integr. Syst., doi:10.1109/TVLSI.2006.876103, 2006. 711 

Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J., Carter, M., Deconinck, 712 

W., Ford, R., Maynard, C., Mullerworth, S., Osuna, C., Porter, A., Serradell, K., 713 

Valcke, S., Wedi, N. and Wilson, S.: Crossing the chasm: How to develop weather 714 

and climate models for next generation computers?, Geosci. Model Dev., 715 

doi:10.5194/gmd-11-1799-2018, 2018. 716 

Levin, J. G., Iskandarani, M. and Haidvogel, D. B.: A nonconforming spectral element 717 

ocean model, Int. J. Numer. Methods Fluids, 34(6), 495–525, doi:10.1002/1097-718 

0363(20001130)34:6<495::AID-FLD68>3.0.CO;2-K, 2000. 719 

Lidman, J., Quinlan, D. J., Liao, C. and McKee, S. A.: ROSE::FTTransform - A source-720 

to-source translation framework for exascale fault-tolerance research, Proc. Int. 721 

Conf. Dependable Syst. Networks, (June), doi:10.1109/DSNW.2012.6264672, 2012. 722 

Luettich, R. A., Westerink, J. J. and Scheffner, N.: ADCIRC: an advanced three-723 

dimensional circulation model for shelves coasts and estuaries, report 1: theory and 724 

methodology of ADCIRC-2DDI and ADCIRC-3DL., 1992. 725 

Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for 726 

geophysical fluid problems, Rev. Geophys., doi:10.1029/RG020i004p00851, 1982. 727 

Naumann, U., Utke, J., Heimbach, P., Hill, C., Ozyurt, D., Wunsch, C., Fagan, M., 728 

Tallent, N. and Strout, M.: Adjoint code by source transformation with OpenAD/F, 729 

Eur. Conf. Comput. Fluid Dyn. ECCOMAS CFD 2006, (September 2014), ~, 2006. 730 

Pugh, W.: Uniform Techniques for Loop Optimization, in Proceedings of the 5th 731 

International Conference on Supercomputing, pp. 341–352, ACM, New York, NY, 732 

USA., 1991. 733 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



29 

 

Qiao, F., Zhao, W., Yin, X., Huang, X., Liu, X., Shu, Q., Wang, G., Song, Z., Li, X., 734 

Liu, H., Yang, G. and Yuan, Y.: A Highly Effective Global Surface Wave Numerical 735 

Simulation with Ultra-High Resolution, in International Conference for High 736 

Performance Computing, Networking, Storage and Analysis, SC., 2017. 737 

Reynolds, J. C.: Theories of Programming Languages, Cambridge University Press, 738 

New York, NY, USA., 1999. 739 

Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system 740 

(ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic 741 

model, Ocean Model., doi:10.1016/j.ocemod.2004.08.002, 2005. 742 

Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, 743 

J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, M., Large, 744 

W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S., Vertenstein, M. and Yeager, 745 

S.: The Parallel Ocean Program (POP) reference manual: Ocean component of the 746 

Community Climate System Model (CCSM), Los Alamos Natl. Lab. Tech. Rep. 747 

LAUR-10-01853, 141, 1–141 [online] Available from: www.cesm.ucar.edu/models 748 

/cesm1.0/pop2/doc/sci/POPRefManual.pdf, 2010. 749 

Suganuma, T. and Yasue, T.: Design and evaluation of dynamic optimizations for a 750 

Java just-in-time compiler, ACM Trans. …, doi:10.1145/1075382.1075386, 2005. 751 

Taylor, K. E., Stouffer, R. J. and Meehl, G. A.: An overview of CMIP5 and the 752 

experiment design, Bull. Am. Meteorol. Soc., 93(4), 485–498, doi:10.1175/BAMS-753 

D-11-00094.1, 2012. 754 

Torres, R., Linardakis, L., Kunkel, J. and Ludwig, T.: ICON DSL: A Domain-Specific 755 

Language for climate modeling, Sc13.Supercomputing.Org [online] Available from: 756 

http://sc13.supercomputing.org/sites/default/files/WorkshopsArchive/pdfs/wp127s757 

1.pdf, 2013. 758 

Utke, J., Naumann, U., Fagan, M., Tallent, N., Strout, M., Heimbach, P., Hill, C. and 759 

Wunsch, C.: OpenAD/F: A Modular Open-Source Tool for Automatic 760 

Differentiation of Fortran Codes, ACM Trans. Math. Softw., 34(4), 18:1-18:36, 761 

doi:10.1145/1377596.1377598, 2008. 762 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



30 

 

Walther, A., Griewank, A. and Vogel, O.: ADOL-C: Automatic Differentiation Using 763 

Operator Overloading in C++, PAMM, doi:10.1002/pamm.200310011, 2003. 764 

Xu, S., Huang, X., Oey, L. Y., Xu, F., Fu, H., Zhang, Y. and Yang, G.: POM.GPU-v1.0: 765 

A GPU-based princeton ocean model, Geosci. Model Dev., doi:10.5194/gmd-8-766 

2815-2015, 2015. 767 

 768 
  769 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



31 

 

Tables 770 

Table 1. Definitions of the twelve basic operators 771 

Notations Discrete Form Basic Operator 

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑓𝑓𝑥𝑥 [ var(i,j,k)   +  var(i+1,j,k) ] / 2 AXF 

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑏𝑏𝑥𝑥 [ var(i,j,k)   +  var(i-1,j,k) ] / 2 AXB 

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑓𝑓
𝑦𝑦 [ var(i,j,k)   +  var(i,j+1,k) ] / 2 AYF 

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑏𝑏
𝑦𝑦 [ var(i,j,k)   +  var(i,j-1,k) ] / 2 AYB 

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑓𝑓𝑧𝑧  [ var(i,j,k)   +  var(i,j,k+1) ] / 2 AZF 

𝑣𝑣𝑣𝑣𝑣𝑣����� 𝑏𝑏𝑧𝑧  [ var(i,j,k)   +  var(i,j,k-1) ] / 2 AZB 

𝛿𝛿𝑓𝑓𝑥𝑥(𝑣𝑣𝑣𝑣𝑣𝑣) [ var(i+1,j,k) -   var(i,j,k) ] / dx(i,j) DXF 

𝛿𝛿𝑏𝑏𝑥𝑥(𝑣𝑣𝑣𝑣𝑣𝑣) [ var(i,j,k)   -   var(i-1,j,k) ] / dx(i-1,j) DXB 

𝛿𝛿𝑓𝑓
𝑦𝑦(𝑣𝑣𝑣𝑣𝑣𝑣) [ var(i,j+1,k) -   var(i,j,k) ] / dy(i,j) DYF 

𝛿𝛿𝑏𝑏
𝑦𝑦(𝑣𝑣𝑣𝑣𝑣𝑣) [ var(i,j,k)   -   var(i,j-1,k) ] / dy(i,j-1) DYB 

𝛿𝛿𝑓𝑓𝑧𝑧(𝑣𝑣𝑣𝑣𝑣𝑣) [ var(i,j,k+1) -   var(i,j,k) ] / dz(k) DZF 

𝛿𝛿𝑏𝑏𝑧𝑧(𝑣𝑣𝑣𝑣𝑣𝑣) [ var(i,j,k)   -   var(i,j,k-1) ] / dz(k-1) DZB 

 772 
  773 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



32 

 

Table 2 ．The jumping rules of an operator acting on an Array  774 

The initial position  

of var 

The position of 

[A|D]X[F|B] (var) 

The position of 

 [A|D]Y[F|B] (var) 

The position of 

 [A|D]Z[F|B] (var) 

0 1 2 4 

1 0 3 5 

2 3 0 6 

3 2 1 7 

4 5 6 0 

5 4 7 1 

6 7 4 2 

7 6 5 3 

 775 
  776 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



33 

 

Table 3. Comparing GOMO with several variations of the POM 777 

Model Lines of code Method Computing Platforms 

POM2k 3521 Serial CPU 

sbPOM 4801 MPI CPU 

mpiPOM 9685 MPI CPU 

POMgpu 30443 MPI + CUDA GPU 

GOMO 1860 OpenArray CPU, Sunway 

 778 
  779 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



34 

 

Table. 4. Comparison of the amount of code for different functions 780 

Functions 
Lines of code 

POM2k sbPOM GOMO 

Solve for η 16 72 1 

Solve for Ua 75 183 11 

Solve for Va 75 183 11 

Solve for W 36 90 3 

Solve for q2 and q2l 318 854 162 

Solve for T or S 178 234 71 

Solve for U 118 230 50 

Solve for V 118 230 50 

 781 
  782 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



35 

 

Table 5. Four benchmark tests 783 

Benchmark Dimensions Grid Size 
OpenArray 

version (seconds) 

Original 

version(seconds) 

Continuity equation 2D 8192×8192 7.22  7.10 

Heat diffusion equation 

Hotspot2D 

2D 

2D 

8192×8192 

8192×8192 

6.20  

11.37  

6.34 

11.21 

Hotspot3D 3D 512×512×8 0.96  1.01 

 784 
  785 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



36 

 

Figures 786 

 787 

Figure 1. Implementation of Eq. (4) by basic operators. The elf and elb are the surface 788 

elevations at times (t+1) and (t-1) respectively.  789 
  790 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



37 

 

 791 
Figure 2. Implementation of the shallow water equations by basic operators. elf, el and 792 

elb denote sea surface elevations at times (t+1), t and (t-1), respectively. Uf, U and Ub 793 

denote the zonal velocity at times (t+1), t and (t-1), respectively. Vf, V and Vb denote 794 

the meridional velocity at times (t+1), t and (t-1), respectively. aam denotes the 795 

viscosity coefficient.  796 
  797 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



38 

 

 798 

Figure 3. The schematic diagram of the relative positions of the variables on the 799 

abstract staggered grid and the jumping procedures among the grid points. 800 
  801 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



39 

 

 802 
Figure 4. The workflow of OpenArray. 803 

  804 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



40 

 

 805 
Figure 5. The effect of “The self-documenting code is the formula” illustrated by the 806 

sea surface elevation equation. 807 

  808 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



41 

 

 809 

Figure 6. Parsing the operator expression form into the computation graph. 810 
  811 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



42 

 

 812 

Figure 7. The schematic diagram of kernel fusion. 813 
  814 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



43 

 

 815 
Figure 8. Flow diagram of GOMO 816 

  817 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



44 

 

  818 
Figure 9. Comparison of the surface elevation (shaded) and currents at 3500 metres 819 

depth (vector) between GOMO and sbPOM on the 4th model day. (a) GOMO, (b) 820 

sbPOM, (c) GOMO-sbPOM. 821 
  822 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



45 

 

 823 

Figure 10. Performance comparison between sbPOM and GOMO. (a) The strong 824 

scaling result; vertical axis denotes the speedup relative to 16 processes in a single node. 825 

(b) The weak scaling result. 826 
  827 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



46 

 

  828 
Figure 11. Parallel efficiency of GOMO on the Sunway TaihuLight supercomputer. 829 

 830 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-28
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.


